Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Genomics ; 74: 101082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485290

RESUMO

Bacteria of the genus Psychrobacter are widely distributed in the global low-temperature marine environment and have been studied for their effects on the settlement and metamorphosis of marine invertebrates. Psychrobacter cibarius AOSW16051 was isolated from the surface water samples of the Baltic Sea on the edge of the Arctic Ocean. Here, we present the complete genome of strain AOSW16051, which consists of a circular chromosome composed of 3,425,040 nucleotides with 42.98% G + C content and a circular plasmid composed of 5846 nucleotides with 38.66% G + C content. The genes predicted in this strain showed its strong outer membrane system, type VI secretion system and adhesion system. Trimeric autotransporter adhesins (TAAs) has been identified in the genome of P. cibarius AOSW16051, which has a variety of biological functions in interacting with host cells. However, there are no reports on TAAs in marine bacteria and aquatic pathogenic bacteria. By analyzing the genomic data, we can gain valuable insights to enhance our understanding of the physiological characteristics of P. cibarius, as well as the biological functions of TAAs and their role in triggering metamorphosis of invertebrate larvae.


Assuntos
Psychrobacter , Psychrobacter/genética , Sistemas de Secreção Tipo V/genética , Adesinas Bacterianas/genética , Nucleotídeos
3.
Front Microbiol ; 13: 934966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783444

RESUMO

The fabrication of an eco-friendly, multi-functional, and mechanically robust superhydrophobic coating using a simple method has many practical applications. Here, inspired by shell nacre, the micro- or nano-scale surface roughness that is necessary for superhydrophobic coatings was formed via Bacillus subtilis-induced mineralization. The biomineralized film coated with hexadecyltrimethoxysilane (HDTMS) exhibited superhydrophobicity with water contact angles of 156°. The biomimetic HDTMS/calcite-coating showed excellent self-cleaning, anti-icing, and anti-corrosion performances. Furthermore, mechanically robust superhydrophobicity could be realized by hierarchically structured biomineralized surfaces at two different length scales, with a nano-structure roughness to provide water repellency and a micro-structure roughness to provide durability. Our design strategy may guide the development of "green" superhydrophobic coatings that need to retain effective multi-functional abilities in harsh marine environments.

4.
Bioelectrochemistry ; 144: 108047, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35007894

RESUMO

In this work, we found that the microbiologically influenced corrosion of Pseudomonas aeruginosa was mediated by Mo in low-alloy steel. Through immersion experiments, we found that the corrosion rate of low-alloy steel was not decreased with the addition of 1.0 wt% Mo. However, in the presence of P. aeruginosa, the corrosion rate of the 1.0 wt% Mo steel was accelerated, resulting in the development of pits. Confocal laser scanning microscopy images revealed that more biofilm cells adhered on the 1.0 wt% Mo steel surface. The chemotactic behavior and swimming ability of the bacteria were the main reason for the greater biofilm cell adhesion in the presence of Mo. Using an RNA-seq assay, we verified that both chemotaxis and motility together affected the adhesion of biofilm, and their related genes were affected by Mo.


Assuntos
Pseudomonas aeruginosa
5.
Bioelectrochemistry ; 145: 108052, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35065377

RESUMO

In this work, we studied the microbiologically influenced corrosion mechanism of Cu by marine ammonifying bacterium Alcaligenes aquatilis. Through immersion experiments, we found that A. aquatilis could accelerate the corrosion rate of copper, resulting in the development of pits. In the presence of A. aquatilis, the morphology and composition of the corrosion products differed from the abiotic samples, and we found that Cu2O was the main corrosion product. By analyzing the biotic medium and experimental NH3 addition, we verified that NH3 was the main component that intensified copper corrosion. Furthermore, we found that NH3 played a catalytic role in the corrosion of Cu in the presence of A. aquatilis.


Assuntos
Alcaligenes , Cobre , Bactérias , Corrosão
6.
Front Microbiol ; 10: 1111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164881

RESUMO

The marine bacterium, Vibrio natriegens, grows quickly in a marine environment and can significantly accelerate the corrosion of steel materials. Here, we present an approach to inhibit V. natriegens-induced corrosion by biomineralization. The corrosion of steel is mitigated in seawater via the formation of a biomineralized film induced by Bacillus subtilis. The film is composed of extracellular polymeric substances (EPS) and calcite, exhibiting stable anti-corrosion activity. The microbial diversity and medium chemistry tests demonstrated that the inhibition of V. natriegens growth by B. subtilis was essential for the formation of the biomineralized film.

7.
ACS Appl Mater Interfaces ; 10(46): 40317-40327, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30335931

RESUMO

Steel corrosion is a global problem in marine engineering. Numerous inhibitory treatments have been applied to mitigate the degradation of metallic materials; however, they typically have a high cost and are not environmental friendly. Here, we present a novel and "green" approach for the protection of steel by a marine bacterium Pseudoalteromonas lipolytica. This approach protects steel from corrosion in seawater via the formation of a biofilm followed by the formation of an organic-inorganic hybrid film. The hybrid film is composed of multiple layers of calcite and bacterial extracellular polymeric substances, exhibiting high and stable barrier protection efficiency and further providing an in situ self-healing activity. The process involving the key transition from biofilm to biomineralized film is essential for its lasting anticorrosion activity, which overcomes the instability of biofilm protection on corrosion. Therefore, this study introduces a new perspective and an option for anticorrosion control in marine environments.


Assuntos
Biofilmes , Pseudoalteromonas , Água do Mar/microbiologia , Microbiologia da Água , Celulose/química , Corrosão , Eletroquímica , Microscopia Eletrônica de Varredura , Oceanos e Mares , Plasmídeos/metabolismo , Polímeros/química , Aço , Temperatura , Difração de Raios X
8.
Polymers (Basel) ; 10(6)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30966625

RESUMO

The effect of single-layer graphene sheets (Gr) on the corrosion protection of zinc-rich epoxy primers (ZRPs) was investigated. Scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) were used to characterize morphology and composition of the coatings after immersion for 25 days. The cross-sectional SEM images and X-ray photoelectron spectroscopy (XPS) confirmed that the addition of single-layer graphene facilitated assembling of zinc oxides on the interface between the coating and the steel. The open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) measurements revealed that both the cathodic protection and barrier performance of the ZRP were enhanced after addition of 0.6 wt. % Gr (Gr0.6-ZRP). In addition, the cathodic protection property of the Gr0.6-ZRP was characterized quantitatively by localized electrochemical impedance spectroscopy (LEIS) in the presence of an artificial scratch on the coating. The results demonstrate that moderate amounts of single-layer graphene can significantly improve corrosion resistance of ZRP, due to the barrier protection and cathodic protection effects.

9.
RSC Adv ; 8(2): 843-847, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35538985

RESUMO

Bimetallic cost-effective CoNi nanoparticles (NPs) are conveniently supported on titanium carbides (MXene) by a simple one-step wet-chemical method. The synthesized CoNi/MXene catalysts are characterized by XPS, TEM, STEM-HAADF and ICP-AES. The as-prepared CoNi NPs with a size of 2.8 nm are well dispersed on the MXene surface. It is found that among the CoNi bimetallic system, Co0.7Ni0.3 shows the best performance toward catalyzing ammonia borane (AB) decomposition with a turnover frequency value of 87.6 molH2 molcat -1 min-1 at 50 °C. The remarkable catalytic performance is attributed to the mild affiliation of MXene to NPs, which not only stabilizes NPs to maintain a good dispersion but also leaves sufficient surface active sites to facilitate the catalytic reaction.

10.
Colloids Surf B Biointerfaces ; 157: 157-165, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28586728

RESUMO

In a marine environment, Bacillus subtilis and Pseudoalteromonas lipolytica are commonly found in the biofilms adherent to low-alloy engineering steel, and they have distinct effects on corrosion. In the present work, this phenomenon was investigated through the study of various materials characterization methods, electrochemical techniques, and contact angle measurements. It was found that the surface film formed on the steel in the presence of B. subtilis was compact, uniform, free of cracks, and hydrophobic. However, the film formed in the presence of P. lipolytica was loose, rough, heterogeneous, and hydrophilic. The main components of the films formed in the presence of B. subtilis and P. lipolytica were polysaccharides/TasA amyloid fibers and proteins/carboxylic acid, respectively. The composition, structure, and properties of the surface films formed on the steel were associated with different effects on corrosion. The presence of B. subtilis enhances the steel's resistance to corrosion, whereas corrosion was increased by the presence of P. lipolytica. In short, the compact and hydrophobic biofilm of B. subtilis appears to inhibit the corrosion of steel, while the loose, hydrophilic film of P. lipolytica tends to induce pitting corrosion.


Assuntos
Bacillus subtilis/fisiologia , Aderência Bacteriana/fisiologia , Pseudoalteromonas/fisiologia , Água do Mar/microbiologia , Aço , Corrosão
11.
Colloids Surf B Biointerfaces ; 116: 793-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24503414

RESUMO

This study describes the synthesis of silver nanocomposites (Ag NCs), with different structures, decorated with silica nanoparticles (SiO2 NPs) and their antibacterial activity was evaluated. The core-shell microspheres were fabricated by the deposition of polydopamine (PDA) formed by the spontaneous oxidative polymerization of dopamine. Simultaneously, Ag(+) ions were reduced to nanosilver and subsequently deposited on the surface of the SiO2/PDA spheres to form SiO2/PDA/Ag NPs. Moreover, nanosilver encapsulated in mesoporous SiO2 NPs (Ag-MSN) were investigated for bactericidal activity to facilitate comparisons. Bacterial growth curves and reactive oxygen species (ROS) assays indicated that both Ag-MSN and SiO2/PDA/Ag NPs exhibited antimicrobial activity; however, at different stages, due to their distinct structures. This study revealed that the production of ROS and damage to the membrane were the two major mechanisms of the bactericidal activity of Ag NCs. The antibacterial mechanisms for each NC are discussed and supported by observations from transmission electron microscopy.


Assuntos
Nanocompostos/química , Prata/farmacologia , Vibrio/efeitos dos fármacos , Antibacterianos , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...